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Abbreviations

M, Planet total mass

R, Planet total radius

Mg  FEarth total mass (= 5.972 - 10%* kg)

Mg Sun total mass (= 2 - 1030 kg)

R Sun total radius (= 696340 km)

Lo Sun total luminosity (= 3.846 - 10?6 watts)

AU  Astronomical unit (= 1.495978707 - 10! m)

Teq Equilibrium temperature

P-T  Pressure-Temperature

G  Gravitational constant (= 6.674 - 10~ N.m?.kg—2)
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Abstract

French

L’exploration des exoplanctes et I’analyse de leurs masses et de leurs rayons nous ont
révélé une large gamme de densités moyennes, fournissant des informations précieuses
sur leur structure interne. Malgré ces avancées, la différenciation - séparation en couches
de compositions distinctes - de ces astres introduit des dégénérescences parmi leurs com-
positions potentielles, ce qui complique la détermination de leurs propriétés internes.

Nous présentons ici une nouvelle approche pour relever ce défi en combinant un modele
de structure interne de planete en 1D, MAGRATHEA, avec un algorithme d’échantillonnage
imbriqué, UltraNest. Notre objectif est de contraindre la structure interne des exoplanetes
les plus répandues dans notre galaxie, a savoir les planétes plus grandes que la Terre mais
plus petites que Neptune (entre 1 et 4 R®)[I]. Pour la modélisation de ces intérieurs, nous
considérons quatre couches possibles: un noyau de fer, un manteau composé de silicates,
une hydrosphere composée d’eau/de glace, et une atmosphere composée d’un mélange
d’hydrogene/hélium. En utilisant des techniques d’échantillonnage imbriqué, nous visons
a explorer les compositions possibles et a discriminer la ou les plus probables. Enfin,
nous utilisons notre modele pour étudier K2-18b, actuellement 'une des exoplanetes les
plus prometteuses en termes d’habitabilité et qui suscite de vifs débats sur sa structure
interne.

Nous comparons nos recherches avec des études précédentes pour valider 'efficacité de
notre approche, et les résultats de ce projet contribueront a améliorer la compréhension
des intérieurs exoplanétaires, essentielle dans I’étude de leur climat et de leurs conditions
d’habitabilité.

English

The exploration of exoplanets has revealed a wide range of planetary bulk compositions
through the analysis of their masses and radii, leading to valuable insights into their
internal structure. However, the differentiation of exoplanets’ interiors into distinct layers
introduces degeneracies among possible compositions, complicating efforts to accurately
infer their internal properties.

Here, we present a novel approach to address this challenge by combining a 1D planet
interior structure model, MAGRATHEA, with a nested sampling algorithm, UltraNest. Our
goal is to constrain the interior structure of the most populous class of planets in our
galaxy, which are planets larger than Earth but smaller than Neptune (between 1-4
R®)[1]. For the planet’s interior, we consider four possible components: an iron core, a
mantle of silicates, an hydrosphere composed of water/ice covered by an H2-dominated
atmosphere in ideal gas conditions. By employing nested sampling techniques, we aim to
explore the parameter space and discriminate between various compositional models. We
finally use our work to study K2-18b, one of the most promising exoplanets for habitability
that creates debate on its real composition.

We compare our results with previous studies to validate the effectiveness of our
approach. The results of our project will help enhance our understanding of exoplanetary
interiors, which are crucial in driving planets’ climates and creating habitable conditions.
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1 Introduction

Our objective is to unravel the composition and structure of a specific class of
exoplanets: the sub-Neptunes. To achieve this, let us start by discussing the types
of stars around which we observe exoplanets, the methods used in planet detection,
followed by a closer examination of the category of planets relevant to our study,
sub-Neptunes, and at last we will focus on the exoplanet K2-18b.

1.1 M dwarf opportunity

Stars are classified by letters from the hottest to the coolest; we have: OBAFGKM.
The coolest and most promising are the M-type stars, also called M dwarfsﬂ

M dwarf presents a real advantage when it comes to exoplanets detection, first,
they stand out as the most abundant stellar type in our galaxy, 70%[3] and 80%
of our close solar neighborhood[4][5]. They also possess a minimum of twice the
number of small exoplanets with A, sin i < 10Mg compared to G-type stars [0],
¢ being the inclination angle of the orbital plane relative to the line of sight from
Earth.

Due to their small size (0.1-0.6 R )P and masses (0.08-0.6 M )2} planets or-
biting M dwarfs are easier to detect compared to planets of the same size orbiting
a larger star. The two main stellar parameters for the detection of exoplanets are
mass and size. The size is particularly significant because the depth of the eclipse
during the planet’s transit depends on the ratio of the planet’s radius to the star’s
radius. Additionally, as the mass of the star increases, the amplitude of the radial
velocity decreases. This is why planets orbiting M dwarfs, despite their smaller size
and mass, have a relatively larger effect on their host stars, making them wobble
more (see section [L.2)[7]. In contrast, but logically, the easiest planets to detect
are the large and hot exoplanets. Having low mass also means M dwarfs are very
long-lived, stellar models suggest they could exist for trillions of years, which is far
more than the current age of the universe, the lower the mass of a red dwarf, the
longer the lifespan]g].

However their low luminosity (0.069-3.0-107*L,J2| and indeed their magnitude
can complicate the detection, especially when the planet is very small. This is
because the faintness of the star makes it more difficult to distinguish the tiny dip
in brightness caused by the small planet passing in front of it. Additionally, this
low luminosity may result in a lower signal-to-noise ratio, further complicating the
detection process.

Moreover, the cooler temperatures of M dwarfs compared to solar-type stars
result in planets located within their habitable zones - regions where conditions
could support liquid water on the surface - being situated nearer to their host star.
This proximity corresponds to orbital periods that are typically well covered by
current surveys, such as approximately 60 days for a big MO star and 3 days for a
small M9 star, thus aiding in their detection and characterization[7]. But on the
other hand, this close proximity raises concerns about tidal locking - when the same
side of the planet always faces the star - and stellar irradiation effects, which could
influence their habitability[9]

!Source: https://media4.obspm.fr/public/ressources,u/pages,bservation/bb — type — spectral.html
2Source: |https://en.wikipedia.org/wiki/Red_dwarf
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Finally, the only main problem about M dwarfs is their stellar flares, which
exhibit more than solar-type stars due to their more intense magnetic activity, which
arises from their rapid rotation and low mass[I0]. This greater stellar activity can
introduce noise into observational data, complicating the differentiation between
planetary signals and stellar variability[I1], and again potentially impacting the
habitability of nearby planets[12].

Nevertheless, this opportunity for research and study of exoplanets through
M dwarfs called the "M dwarf opportunity,” has resulted in numerous detection
of highly encouraging low-mass planets (< 10Mg) within the habitable zones of
M-dwarf hosts, including TRAPPIST-1[13], Proxima Centauri[I4], and K2-18]15].

1.2 Detection methods

Various methods have been used to detect exoplanets, allowing us to deduce the
main planet parameters. The main goal of this project is to study the internal
composition of exoplanets based on observationally determined mass and radius,
thus deriving the bulk density. Additionally, we’ll analyze its spectra to study its
atmosphere (see section. The transit method is best for radius characterization,
while radial velocity is optimal for mass determination.

Transiting planets are those that pass in front of their parent star, causing the
starlight to dim by an amount equal to the planet-to-star area ratio. Assuming
the stellar disc is uniformly bright and neglecting any flux from the planet, we can
simplify the calculation by disregarding the limb-darkening effect. With knowledge
of the star’s size, we can then infer the size of the exoplanet using the following

formula:
Af _( Ry )
7= () W

Where % represents the fractional flux deficit measured from the light curv.

The radial velocity method, also known as the Doppler spectroscopy measures
the variations in the radial velocity of the star induced by the gravitational influence
of its orbiting planets (see Figure . We can have access to the planet’s mass by
combining Kepler’s Third Law and this equation[16]:

v, = Ksin(i) (2)

Where v, is the radial velocity, K is the amplitude of the radial velocity curve
(related to the mass of the planet and the orbital parameters) and i as previously
said is the inclination angle of the orbital plane relative to the line of sight from
Earth. However, it’s important to note that in many cases, only a lower limit on
the planet’s mass can be determined using the radial velocity method, because the
inclination angle of the orbit may not be knownﬁ If the orbit is observed nearly
edge-on (i &~ 90°), then the measured radial velocity provides a good estimate of the
planet’s true mass. Otherwise, the measured radial velocity gives only a minimum
mass (referred to as the "minimum mass” or ”M sin(i)” )4

3Source: https://www.paulanthonywilson.com/exoplanets/exoplanet-detection-techniques/the-
exoplanet-transit-method /
*Source: https://www.planetary.org/articles/color-shifting-stars-the-radial-velocity-method
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Figure 1: Exoplanets are detectable through the observation of the 'wobble’ in their star’s
motion induced by the gravitational pull of the planet as both orbit a common center
of mass. When observed from a distance, the star exhibits an apparent motion towards
and away from the observer. This motion causes a slight blue shift in the star’s light
when moving towards the observer and a slight red shift when moving away. This change
in frequency is referred to as the Doppler effect, analogous to the change in pitch of an
ambulance siren as it passes by. Credit: ESAﬂ

After obtaining both the radius and the mass, we calculate the bulk density
using the straightforward equation:

MP
(3)
R

p:

Ultimately, utilizing the average density, which serves as our primary - and only
real - tool, alongside the planet’s mass and radius, we can try to ascertain the entire
composition of the planet interiorﬂ (see section .

Now that we have identified our primary targets for observation, the M dwarfs,
and have established the methodology for exoplanet detection, let us turn our
attention to the specific types of exoplanets on which we will focus.

1.3 Exoplanets classification

While one option might be to concentrate on larger, hotter exoplanets known as
Hot Jupiters, which are similar to gas giants like Jupiter and Saturn, these planets
are not considered optimal candidates for hosting life or habitable conditions. This
is because they have very short orbital periods (less than 10 days), placing them
very close to their host stars, typically within 0.1 AU[17]. This proximity leads to
very high surface temperatures, so high it is unlikely for water, a key ingredient for
life as we know it, to exist in liquid form on these planets[18].

Instead, we are going to focus our study on smaller exoplanets that are much
more promising and intriguing, such as Super-Earths, sub-Neptune planets, and
their subcategory, the Hycean worlds.

6Source: |https://physics.mit.edu/wp-content /uploads/2021/01/physicsatmito8seager.pdf
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1.3.1 Super-Earths and sub-Neptune planets

Planets between the size of Earth and Neptune (with radii of 1-4 Rg) are the most
common class in our galaxy but have no analog in our solar system. Spanning a
wide range of possible interior and atmospheric compositions, they usually orbit
closer to their host stars than Mercury does the Sun[19].

These small exoplanets are currently categorized into two main groups: those
smaller than approximately 1.7Rg are labeled as super-Earths and are believed to
have terrestrial characteristics with iron-to-silicate ratios similar to those of Earth
and Venus. On the other hand, those with radii between 1.7-4 R4 exhibit bulk densi-
ties consistent with a mix of iron, rock, ice, and volatile materials. These exoplanets
in the latter category are known as sub-Neptunes or gas dwarfs, as their composi-
tions likely include significant amounts of low mean molecular weight materials such
as hydrogen and helium to account for their bulk densities[20]. A substantial hy-
drogen /helium atmosphere may constitute only a small fraction of a sub-Neptune’s
total mass, yet it can contribute significantly to its observed radius[2]].

There is an interesting relative under abundance of Sub-Neptune planets be-
tween 1.5 and 2.0Rg, often referred to as the ’small planet radius gap’[22]. This
bi-modality suggests that sub-Neptunes are primarily rocky planets that initially
acquired primary atmospheres, accounting for a few percent of their total mass,
from the protoplanetary nebula. Planets above the radius gap were able to re-
tain their atmospheres, classified as ”gas-rich super-Earths,” while those below
the radius gap lost their atmospheres and became stripped cores, known as "true
super-Earths.” The mechanism responsible for atmospheric loss in these planets
remains an unresolved question, with photoevaporation and core-powered mass
loss being the leading hypotheses[19]. Although the term ”gap” might suggest a
complete absence, it does not denote a range of radii entirely missing from the ob-
served exoplanet population. Instead, it signifies a range of radii that are relatively
infrequent[22].

1.3.2 Hycean worlds

Now let’s delve into a novel category of temperate sub-Neptunes, potential candi-
dates for habitability, characterized by water-rich interiors hosting extensive oceans
beneath hydrogen-rich atmospheres: the Hycean worlds, a term derived from ”Hy-
drogen” and ”Ocean”[23]. With densities ranging between those of rocky super-
Earths and more extended mini-Neptunes, their radii can reach up to 2.6 Rg, (2.3Rg)
for a mass of 10Mg (5Mg). Similar to many exoplanets, they may be tidally locked,
resulting in the existence of "dark Hycean” planets, habitable only on the side of
perpetual night, or ”cold Hycean” planets, where minimal irradiation is counterbal-
anced by the greenhouse effect to maintain warmth. Dark Hycean worlds may arise
when atmospheric heat transport from the permanent day side to the permanent
night side is ineffective, resulting in temperate temperatures on the night side while
the day side is too hot to sustain life[23].

Given the complexity of the classification, determining the true nature of these
small exoplanets is challenging due to the degeneracy of their interior. While we
can measure their radii and masses, these values only yield a bulk density.

One planet that has likely generated the most debate regarding its true nature
is K2-18b.



1.4 Our study case: K2-18b

K2-18b is an exoplanet discovered in 2015 by the team led by Bjorn Benneke,
using data collected by NASA’s Kepler Space Telescope employing the transit
method[24], later confirmed with the Spitzer Space Telescope through Doppler ve-
locity techniques[25]. It is located approximately 124 light-years away from Earth
and orbits a nearby M2.5 dwarf called K2-18 (receiving virtually the same stellar
insolation as Earth)[24].

In terms of size, K2-18b has a radius of R, = 2.610 &£ 0.087R4[26], a mass of
M, = 8.63 £ 1.35M[27] and a bulk density of 2.671032 g.cm=3[26].

Its orbit lies within the habitable zone of its host star, indicating that the planet
could potentially harbor liquid water on its surface and more than this K2-18b arbor
an intriguing promising atmospheric composition.

Recent observations by the James Webb Space Telescope (i.e., JWST[2§]) reveal
strong evidence for CH4 and CO2 in an H2-rich atmosphere but did not detect NH3,
H20, or CO (see Figure [2).

This offers three possible compositional scenarios for K2-18b according to Nikku
Madhusudhan, Matthew C. Nixon et al: a gas-rich mini-Neptune, a Hycean world,
or a rocky planet[29].

Madhusudhan et al. 2023 argued that the data are most consistent with a
habitable Hycean world[28] because, based on previous photochemical studies, such
a planet can align with the absence of NH3 detection[30] [31] [32] and their retrieved
1% abundances for CH4 and CO2 are broadly consistent with predictions made by
Hu et al. (2021)[30]. In contrast, ammonia is expected on a mini-Neptune with a
substantial hydrogen atmosphere[30] [32].

However, our objective here is to use our model to determine which scenario is
most fitting, incorporating both the available internal and atmospheric data.

Dimethyl
Sulfide

DMS

°
°
<
S
2
o
=
&2
5
s
€
5
°
€
<

Figure 2: Transmission spectrum of K2-18b atmosphere, obtained with Webb’s NIRISS
(Near-Infrared Imager and Slitless Spectrograph) and NIRSpec (Near-Infrared Spectro-
graph) displays an abundance of methane and carbon dioxide in the exoplanet’s at-
mosphere, as well as a possible detection of a molecule called dimethyl sulfide (DMS).
Creditﬂ NASA, ESA, CSA, Ralf Crawford (STScI), Joseph Olmsted (STScI)



2 Internal composition constraints

Models are essential tools for enhancing our comprehension of exoplanet character-
istics, constructed from observable data related to exoplanets (e.g. mass, radius,
orbits, and atmosphere spectra), host stars (e.g. luminosity and chemical compo-
sition) and protoplanetary disks (e.g. structure and Composition)ﬂ

2.1 Formation

We all agree that the condensation of solid materials from stellar nebulae signif-
icantly influences the basic composition of planetary building blocks. However,
when attempting to understand the formation of sub-Neptune and super-Earth
planets, relying on the solar system’s formation model - our best-known model - we
have a problem due to the absence of such planets in our system [19]. Moreover,
the diverse metallicity and metal-to-oxygen ratios observed in extrasolar systems
suggest variations in condensation identity, abundance, and sequence compared to
our solar system. Consequently, planets forming at similar distances from their
host stars may possess compositions distinct from those of the terrestrial planets in
our solar system[§] Hence, we must explore beyond our familiar framework and ad-
just our perspective. Several potential solutions to this highly pertinent issue have
been suggested (for an in-depth examination, see Raymond, Izidoro, & Morbidelli,
2018]33]). Another problematic aspect of constraining the interior of exoplanets
through modeling their formation is that we primarily rely on their overall char-
acteristics, such as bulk density, to model their formation. This reliance creates a
circular problem where we end up using the information we are trying to understand
to build the models themselves.

2.2 Host star

Exploring alien worlds through their stars can provide valuable insights into ex-
oplanet composition. We can not only analyze mass-radius relationships of the
planets to know its possible interior structure we also need to consider the compo-
sition of the planet’s host star. Since planets and their host stars originate from
the same system, they share similar material from the accretion disk[34] [35], like
similar fractions of certain elements. The iron abundance of a system is particularly
crucial, as it is a common component in planetary interiors, along with elements
like nickel and metallic alloys[36]. Iron, a relatively heavy element, is believed to
be universally present in rocky planets. It can exist in the mantle as silicates and
oxides if oxidized, or form the core of a terrestrial planet as a metal. Therefore, the
availability of oxygen, along with similarities in mass and radius to known rocky
planets, can indicate the possibility of a mantle with oxidized iron[37]. Additionally,
the chemical composition of rocky exoplanets can be estimated by measuring the
elemental abundances of their host stars and applying a devolatilisation algorithm.
This approach, pioneered by Wang et al. (2018, 2019a)[38] [39], considers that
rocky exoplanets are likely devolatilised pieces of the stellar nebulae from which
they and their host stars formed. Recent research emphasizes the importance of

8Source: |https://quanz-group.ethz.ch/research/models-simulations/planetary-composition.html
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applying devolatilisation to the bulk composition of planet-hosting stars, along-
side planetary mass and radius measurements, to better understand the interiors
of terrestrial-type exoplanetsg|

2.3 Structure

Here, we will discuss the overall chemical composition and the layered structure of
Sub-Neptune and super-Earth planets. Although these two types of planets differ
in size and mass, they are believed to share similarities in their formation and
composition.

Within the Solar System, rocky planets have a mantle and crust containing
silicates, oxides, and silicate melts, and an iron-rich core. The principal elements
that compose rocky planets - magnesium, iron, oxygen, carbon, and silicon - are
assumed to be universal in the interiors of these planet types, and the abundance
of these elements will determine the planet’s final compositionﬂ

On the other hand, the thickness of a planetary crust is directly proportional to
how quickly the planet cooled after its formation. A fast cooling rate is expected for
a smaller planet, a low-mass planet, or a planet that is further away from its star.
Such planets would have a proportionally thicker crust, as is seen in the Moon and
Mars[4(]. However, accessing the complete thermal evolution of exoplanets remains
challenging.

Confirm unambiguously that an exoplanet is an hycean planet or a rocky planet
surrounded by H/He atmosphere remains challenging, as such worlds could occupy
the same region of the mass-radius plane, like K2-18b (see Figure . Nevertheless,
for K2-18b its size and density (see section suggest it cannot be composed of
only iron and silicate rock as you can see on Figure [3] further investigation on the
nature of K2-18b will be described in the section [l

9Source: https://en.wikipedia.org/wiki/Exoplanet;nteriors
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Figure 3: Mass—Radius relations for planets with different compositions. The mass frac-
tions are shown in the legend. The solid magenta, teal, and orange curves show cases that
all fit the mass and radius of K2-18b equally well. The dashed magenta line represents
the same composition as the solid magenta line but with a mixed H20-H/He envelope.
Also shown are exoplanets whose masses and radii are known to 3o with T, < 1000K,
from TEPCat[41]. Credit: Madhusudha et al. 2020[29].

2.4 Atmosphere

The study of exoplanet atmosphere can help us understand the deeper interior layers
of an exoplanet. The connection between the atmosphere and the interior layers
of a planet includes processes like volcanism, chemical reactions at the surface,
evaporation of the surface in extremely hot conditions, or weathering cycles. The
James Webb Space Telescope (JWST) is opening a new window in our ability to
characterize exoplanet atmospheres by determining their composition, temperature,
and dynamics.

To obtain the spectra of an exoplanet, we observe it as it passes in front of and
behind its host star from our perspective. During the first transit, a small fraction
of the star’s light passes through the exoplanet’s atmosphere before reaching our
telescopes. By analyzing this transmitted light spectrum during the transit, we can
discern the chemical composition of the exoplanet’s atmosphere and the degree of
light transmission is influenced by the atmospheric opacity, density, and tempera-
ture see Figure 2l The second transit - when the planet passes behind the star -
provides more information, as the planet’s contribution to the total spectrum is hid-
den, and we only access light from the host star. This allows us to determine which
molecules or atoms are from the planet’s atmosphere and which are from the star.
The final atmosphere composition allows us to investigate the internal composition
of the planet and gain insights into its physical and chemical properties.

For instance, for K2-18b, atmospheric NH3 depletion can be a natural conse-
quence of the high solubility of nitrogen species in magma under reducing con-
ditions, precisely the conditions prevailing where a thick hydrogen envelope is in



communication with a molten planetary surface. Thus, there is a chance that K2-
18b is hosting either an ocean of water or magma. Differentiation between them
could be determined by observing a small CO2/CO ratio in the >4 pum wavelenght
region, where CO2 and CO features dominate, indicating magmal42]. This is why
integrating atmospheric spectra into models of the interior and comprehension of
chemistry processes are essential. Moreover, the species found in the spectra pro-
vide information on the mean molecular weight, influencing planetary radius and
mass, as analyzed in Section [6]

Additionally, we do not know how thick the atmosphere of K2-18b is, which
is one of the most important problems when it comes to habitable conditions. A
small atmosphere is compatible with an underlying ocean, which would be more
favorable to life, as we know it on Earth, whereas a massive atmosphere would
leave less space for an ocean and would be so dense that it is less favorable for life,
similar to Jupiter or Saturn.

3 Models used

Our objective is to develop a new model framework combining the planet interior
structure model, MAGRATHEA, and a nested sampling algorithm to constrain the mass
of each layer for small exoplanets. Instead of specifying the mass of individual layers
of the planet, as done in MAGRATHEA, the user will input the total mass, total radius,
and bulk density of the planet determined through the detection method outlined
in a previous section (refer to section [1.2)). Our model will then constrain the mass
of each potential layer of the exoplanet using a nested sampling algorithm.

3.1 MAGRATHEA

There are numerous methods for modeling the interiors of exoplanets, utilizing a
variety of computational techniques, experimental data, temperature profiles, and
theoretical equations of state (EOS) for the materials composing these celestial
bodies. Here we are presenting and utilizing: MAGRATHEA.

MAGRATHEA is an open-source planetary structure code specialized in modeling
fully differentiated, spherically symmetric interiors. By inputting layer masses, sur-
face temperature, and the pressure level that the broad band optical transit radius
probes, the code employs iterative methods, specifically the shooting method to ad-
just hydrostatic equations’ boundary conditions until it converges to a suitable solu-
tion for determining the planet’s radius. The user can input up to four layers com-
prising an iron core, a silicate mantle, a steam/water /ice hydrosphere, and a default
H/He atmosphere that can vary in composition. Temperature profiles, including
options such as isothermal, isentropic, or custom-defined functions, can also be cho-
sen, with certain restrictions. Furthermore, users can select various phase diagrams,
where the EOS may change based on P-T conditions inside each layer, and multiple
formulations, both thermal and non-thermal, for the EOS are implemented[2]. This
model is available at https://github.com/Huang-CL/Magrathea.

The main advantage of MAGRATHEA lies in the flexibility offered to the user along-
side its rapid convergence compared to other interior models, such as ExoPlex|[2],
which is useful when employing nested sampling technique that requires significant
convergence time.


https://github.com/Huang-CL/Magrathea

The name of MAGRATHEA comes from the legendary planet where hyperspatial
engineers manufacture custom-made planets in Douglas Adams’s The Hitchhiker’s
Guide to the Galaxym.

3.1.1 Model equations|2]

The model assumes a single solution to composition, at a given pressure and temper-
ature, exists within each layer. The solver returns a planet interior profile file after
completion, which includes the r, P, T, m, p, and the component phase at each grid
step. Given the mass of each of these layers, Meomp = { Mcore; Mmanties Mhydros Matm
, the code calculates the radius returning the pressure P(m), density p(m), and tem-
perature T'(m) with enclosed mass m by solving the following four equations:

(i) Mass continuity equation

dr(m) 1
dm  4wr2p(m)

(ii) Hydrostatic equilibrium

dP(m) _ Gm (5)

dm e

(ili) Temperature gradient
When the isothermal option is chosen, the temperature gradient is 0. When the
isentropic option is chosen, depending on the available thermal properties of the
phases, the temperature gradient can be calculated using either of the following
two formulae. If the Griineisen parameter 7 is available, we can have :

AT(m) (AT \dVdp g (AT| (90 dP  OpdTY o
dm — \dV|s) dpdm — p* \dV|s) \OPdm 9T dm)"
Thus,
(d_T Gm
dT(m) B dV S 4rd
dm - ) (7)
0? (@ >_ <d_T ) op
Mmol op dv or
T S p
where T -
_ s
avVig V' (®)

Mmel and V are the molar mass and volume respectively. Alternatively, if the
thermal expansion « is available, we can have
dI'(m)  oTGm

dm dmripe,’

(9)

10 Adams D., 1995-2001, The Hitchhiker’s Guide to the Galaxy. Harmony Books, New York
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where ¢, is the specific heat capacity at constant pressure.
(iv) Equation of state (EOS)

P(m) = P(p(m), T(m)) (10)

Which is unique for each material/phase. There are over 30 EOSs available in
MAGRATHEA which can be called within the phase diagrams, see section [3.1.2] These
include EOS functions for various planet building materials, and different parameter
estimates for the same material from various works, see section

The boundary conditions of the model are r = 0 at m = 0.

3.1.2 Phase diagrams|2]

A phase diagram for each layer is essential as phase transitions may occur due
to the extensive pressure and temperature variations within each layer. During
computation, the code initially assesses the pressure and temperature to pinpoint
the appropriate region on the phase diagram.

One notable aspect of MAGRATHEA is the user’s ability to customize the phase
diagram in each layer and choose between Equations of State (EOSs) for each phase.

This flexibility will allow us to test several compositions for the core, see section
5.0.3

3.1.3 Chemistry[2]

Here we will discuss the chemistry and the state of matter of the four layers. The
generic model comprises an Fe inner core, a rocky (silicate) outer core, an H20
layer, and an H/He-rich atmosphere.

(i) Core/Iron
At the extreme pressures of a planetary core, iron is stable in a hexagonal close-
packed (HCP) phase. For a pure iron core (see section [4]) the default equation is the
one from Smith et al. 2018]43] measured by ram compressing iron to 1.4 TPa. We
can also choose iron-silicate alloy EOSs, for Fe-Si alloys with 7 weight percent Si
and 15 weight percent Si from Wicks et al. 2018[44], useful when reproducing the
density of the Earth’s core which contains an unknown mixture of light elements[45]

(see section [5.0.3]).

(ii) Mantle/Silicate

The main mineral constituent of the Earth’s mantle is bridgmanite (Brg), also
known as silicate perovskite which at high pressure transitions to a post-perovskite
(PPv) phase[46]. At high temperatures (> 1950 K at 1.0 GPa), the magnesium
silicate, M¢SiOs, is liquid and the default equation from Wolf and Bower 2018[47]
is used. For Bridgmanite/Perovskite the model uses the equation from Oganov and
Omno 2004[48] and for Post-Perovskite the equation from Sakai, Dekura, and Hirao,
2016[49]. Our default mantle is thus pure M ¢SiO3 in high-pressure phases which
is more S0, rich than the Earth.

(iii) Hydrosphere/Water
Similar to the icy moons in the Solar System; exoplanets with low density are
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theorized to have a large fraction of mass in an hydrosphere composed primarily
of high-pressure water-ice. Due to the complexity of the phase diagram of water
and large uncertainties in current measurements, in the last version of MAGRATHEA,
a simplified hydrosphere phase diagram is used, see Figure

At pressures below 2.216 GPa, the liquid water equation from Valencia et al.
2007a[50] is applied, if the temperature is above the melting curve then the equa-
tion from Dunaeva et al. 2010[51] is used. Below the melting curve, there are Ice Th
equation from Feistel and Wagner 2006[52] and Acuna et al. 2021[53] at pressures
below 0.208 GPa. For pressures above 0.632 GPa, Ice VI equation from Bezacier
et al. 2014[54] is used. Ice II, III, and V, which exist at intermediate pressures,
are currently not included as their layers are thin and have a negligible impact on
the planet. If a planet passes through these phases, the Ice VI EOS is used and
the user is notified that they passed through this region. At high pressure, the
default hydrosphere layer uses Ice VII with thermal expansion from [54]. Lastly,
the default hydrosphere transitions at 30.9 GPa for Ice X used the equation from
Grande et al. 2022[55].

[ce X - Vinet
101 i Ice VII - BME3
=
A
)
A 10°1 Ice VI- BME3
Ice ILIILV [\;&lfquld
ater
(N.L, Ice VI used) BME3
Ice Ih - BMES3 \
107" : ‘
10 100 1000
T (K)

Figure 4: Default log-linear pressure-temperature phase diagram for the hydrosphere.
Vinet and BME3 stand for the different EOS used to calculate the reference isotherm
pressure P, for more detail see Huang et al. 2022[2].

(iv) Atmosphere/Gas
The ideal gas equation of state: The following equations are applied to the gas layer
at all pressures and temperatures,

RT
p=" (11)
Mol
and temperature relation:
Ygas—1
T P oo (12)
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Where 7,45 is the adiabatic index of the gas, and we have the ideal gas temperature

gradient:
dT'(m)  (Ygas — D)MpmaGm (13)
dm Ardyges Rp

To simulate this temperature structure, the default settings for the atmosphere
in MAGRATHEA include an isothermal atmosphere at P < 100 bar to approximate the
radiative temperature gradient, and an adiabatic temperature gradient at P > 100
bar.

The mean molecular weight of each gas EOS can be changed to allow us to
explore atmospheres with different compositions as described in section [5.0.2]

3.2 UltraNest

As we mentioned, our goal is to constrain up to four parameters corresponding to
the masses of each layer of the planet we are examining. Different techniques have
been developed to explore model parameter spaces, but we chose to focus on the
nested sampling technique called UltraNest.

Nested sampling is a powerful statistical technique used to sample from complex
probability distributions, particularly useful in Bayesian inference. It works by iter-
ative sampling from the prior distribution while progressively narrowing down the
region of interest in the parameter space. This technique allows for efficient explo-
ration of the parameter space by focusing computational effort on the most prob-
able regions, which is especially advantageous when dealing with high-dimensional
or multimodal distributions. By continuously updating the nested regions, this
method provides a robust estimate of the evidence and posterior distributions,
making it ideal for our purpose of constraining the masses of planetary layers.

UltraNest employs a combination of active point clustering and ellipsoidal bound-
ing to efficiently explore the parameter space and accurately estimate the evidence.
By adaptively allocating computational resources to regions of high likelihood, Ul-
traNest achieves faster convergence and better performance compared to traditional
MCMC (Markov Chain Monte Carlo) methods, especially for challenging problems
with multimodal or highly correlated posterior distributions['] which is our case.
For a more detailed look on the convergence method see https://johannesbuchner.github.io/UltraNest

In the following section, we are going to discuss the choices made to archive our
goal.

4 Our model

4.1 Environment

Firstly, we adapt the MAGRATHEA code, originally written in C++, into Python
by creating a Python wrappeif?| This new code allows for greater flexibility and
accessibility, as Python is widely recognized for its simplicity and intuitiveness of
use. This transition also opens doors for the use of other Python-based tools and
frameworks, such as the ultranest packagd™}

"Source: https://johannesbuchner.github.io/UltraNest /readme.html
1230urce: https://www.geeksforgeeks.org/function-wrappers-in-python/
13Source: https://pypi.org/project/ultranest,/

13


https://johannesbuchner.github.io/UltraNest/method.html
https://johannesbuchner.github.io/UltraNest/readme.html
https://www.geeksforgeeks.org/function-wrappers-in-python/
https://pypi.org/project/ultranest/

To do so we use Visual Studio CodeE] on UbuntuE] under WSL (Windows Sub-
system for Linux)E].

When wrapping MAGRATHEA, we keep the output as a file containing the six
different parameters of each step of the simulation (see section [3.1.1). We choose
to display the values of the bulk density (in g.cm™3), the final mass (in Mg), and

the final radius (in Rg), as those are the parameters that we will use in the log-
likelihood function (see section {4.3.2)).

4.2 Inputs

The main inputs in our code are the total mass, total radius, and bulk density of the
exoplanet we want to constrain the composition and their uncertainties associated
as presented bellow (K2-18b parameters):

Obs_Mass = 8.63 Err_Mass Max = 1.35 Err_Mass_Min = 1.35
Obs_Rad = 2.610 Err_Rad_Max = 0.087 Err_Rad_Min = 0.087
Obs_Dens = 2.67 Err_Dens_Max = 0.50 Err_Dens_Min = 0.50

In addition, other inputs are the surface temperature of the planet, for in-
stance, 284.0 K [50] for K2-18b, and the pressure level that the broad band optical
transit radius probes, which corresponds to the pressure range that the measuring
instrument is capable of probing. This value is set to 100 pbar and will remain
fixed throughout the entire project, as it is an accurate value for K2-18b and sub-
Neptunes in general.

Future parameters that we will test, such as the mean molecular weight of the
atmosphere and the core EOS (see Section , will be directly modified in the C++
code of MAGRATHEA.

In the model, we can set how many, and which, layers we want to include in our
planet, corresponding to the parameters to fit in our nested sampling algorithm.
M1 corresponds to the mass of the core, M2 to the mass of the mantle, M3 to the
mass of the hydrosphere, and M4 to the mass of the atmosphere. For instance, if
there is no observed atmosphere, we can set the M4 parameter to zero. If we aim
to test a rocky planet with an ocean, we can retain only M1 and M3.

Now that all the inputs are well defined we are creating the nested sampling
algorithm.

4.3 UltraNest algorithm
4.3.1 Prior fonction

First, we need to convert the parameters to physical scales using a cube function.
The cube function takes arguments ranging from 0 to 1. Through this function,
we can determine the range explored for each model parameter. This can be done
either by fixing the range based on the maximum mass of the planet for each
parameter, which is useful when you have no prior idea of the final mass for each
layer, or by preconstraining a range of values for each parameter.

YSource: https://code.visualstudio.com/
'5Source: https://ubuntu.com/
'5Source: https://learn.microsoft.com/en-us/windows/wsl/
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For example, in the case of K2-18b, based on its position on the Mass-Radius
diagram (Figure (3)), we know that all the mass cannot be in the core. Therefore,
we can set an upper boundary where a maximum of 80% of the mass is allocated
to the core. The cube function operates as follows:

params [0] = cube[0] * max_value for_param 0
params [0] = cube[0] * 7.984

Here, the index in params and cube is 0 because we constrain the core, which
is the first layer, but since the index starts at 0 in Python, it will be the first one.
The max_value_for_param_0 in this case corresponds to 80% of the (Obs_Mass +
Err_Mass_Max) of K2-18b. In reality, the final nested sampling algorithm automat-
ically rules out the case of a full iron core for a planet like K2-18b, due to the next
function, the log-likelihood function. This preconstraint on mass is useful when
the user wants to force the model to try a specific composition range. Otherwise,
no preconstraint is needed, and the range for each parameter is equal to the total
mass of the planet.

4.3.2 Log-likelihood

The Log-likelihood function is one of the most important parts of the model, as it
is this function that determines the accuracy of our predictions.

We tried different formulations to minimize the final value of this function, as the
log-likelihood variable calculates how far the data are from the model predictions.
More precisely, this function calculates how often the observed data would arise
under the given parameters, so the goal is to bring this function closer to zero.
Here, we are going to discuss some of the strategies we tried and the conclusions
that were drawn.

First, taking as input the four previously transformed parameters, we run the
wrapped MAGRATHEA with total random parameters - still within the range defined
in the prior function. The values returned are called: Mod_Mass, Mod_Rad, and
Mod_dens.

We assume a Gaussian model and measurement errors of known size (Err_Mass_Max
and Err_Mass_Min):

My first strategy was to try a basic Gaussian model, constraining only the total
mass:

Mod_Mass — Obs_M 2
loglike:—0.5><( od_Mass — Obs_Mass ))

14
max(Err_Mass_Max, Err_Mass_Min (14)

However, no convergence was achieved even for only two parameters. So, instead
of modeling the mass only, we tried to add the contribution of the radius to the
function to be more constraining and as the bulk density combines both the radius
and the mass parameter, we chose to use its contribution instead.

(15)

2
loglike = —0.5 x ( Mod_Dens — Obs_Dens ))

max(Err_Dens_Max, Err_Dens_Min
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The convergence was slightly better but still not there. Then we tried to pe-
nalize the function when it was going too far above the value of (Obs_Dens +
Err_Mass_Dens) or below the value of (Obs_Dens + Err_Dens_Min):

if Mod_Dens < (Obs_Dens - Err_Dens_Min)
loglike = —1%107%

elif Mod_Dens > (Obs_Dens + Err_Dens_Max)
loglike = —1%107%

else :

loglike = Equation [15]

Once again, nothing more conclusive. The penalties were probably too high.
So, we added an adaptive penalty that will be high when the model is far from the
observed value and will decrease as we approach the correct value. To do this, we
are taking the absolute value of the difference between my model and the observed
value, and we choose a lambda parameter that will define the degree of penalty.

abs_diff _dens = np.abs(Mod Dens - Obs_Dens)
penalty_dens = A\ * abs_diff _dens

This was working much better. We tried many different values for lambda, and
the best one was 0.5, as it was the one giving the smallest uncertainties. This is
the value we are going to use for the rest of the project.

As we will later discuss in Section [4.5.2] the high degeneracy of this modeling
required the inclusion of the contribution of three main parameters penalties. The
final and best log-likelihood function was then:

Mod_Dens — Obs_D ?
loglike:—0.5><( od_Dens — Obs_Dens ))

max(Err_Dens Max, Err_Dens_Min

- penalty_dens - penalty_mass - penalty_rad (16)

with the three penalties being formulated the same as penalty_dens.

4.3.3 Global parameters

Finally, we need to define the minimum number of ”live points” (min_num_live_points)
that the algorithm must maintain throughout the sampling process. In principle,
selecting a very low number enables nested sampling to quickly reach the peak with
minimal iterations. However, this approach results in poor sampling of the space,
leading to a large region with low efficiency and the potential to miss interesting
modes. Consequently, a value above 100 is generally recommended, with 400 being
a good initial choice, which is the value we selected.E].

1"Source:  |https://johannesbuchner.github.io/UltraNest /issues.htmlhow-should-i-choose-the-number-
of-live-points
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We set the Kullback-Leibler divergence (dKL) to infinity, deactivating any po-
tential stopping criterion.

The last parameter to set is the minimum effective sample size, ESS, called
'min_ess’ in our model. It represents the minimum number of effective samples
that the algorithm must obtain before stopping. Its function is to measure the
quality of the samples obtained, taking into account the correlation between them.
A higher ESS means that the samples are more independent and therefore of better
quality. We are selecting 10 as a starting point; although this value is low, it allows
us to quickly detect any issues with the simulation.

4.4 Outputs

While running the model, the user will be able to see the live progression of the
model constraints on the parameters. Once the model is done, the result of the con-
vergence will be displayed through a corner plot diagram, showing the distribution
of each variable on the diagonal and the relationships between pairs of variables in
the off-diagonal plots. This helps visualize individual distributions and correlations
in a dataset and provides the best value for the mass of each layer and their asso-
ciated uncertainties, the narrower the Gaussian shape of the model’s parameters,
the fewer uncertainties we will have (see left Figure || for example). We also have
access to the final value of the loglike function, which is useful when comparing
the possible different interior compositions for a same planet (see section @ The
second plot we created is a pie slice chart of the planet’s mass distribution based
on the result of the model to make it more intuitive and clear. This plot also shows
the recalculated values of total mass, radius, and bulk density, as determined by
MAGRATHEA, using the mass results from our simulation. Then it highlights the dif-
ferences between the initial input values and those obtained from the simulation
results (see right Figure [5| for example).

4.5 Benchmark tests

For further understanding of the model, benchmark tests are required.

4.5.1 Two-layer planet

We are first testing the model by simulating a fake planet with a simple composition
of 0.3Mg of iron and 0.7My of silicate, an Earth-like case to test our model. We
start with two layers for the model to constrain. We use the default phase diagrams
and equations of state for the iron core and magnesium silicate mantle. We are
fixing the temperature to 300K and we assume thermal equilibrium between each
boundary layer. The pressure, as always, is fixed to 100ubar.

As this test will serve to ’benchmark’ the model, we need to know what we are
looking for, both the input and the output. To do so, we are using MAGRATHEA first;
for the above values, the model is giving (rounded to three significant figures):

e Final Mass: 1.000 Mg,
e Final Radius: 0.974Rg
e Bulk density: 5.946¢.cm 3
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We can now run our model by inputting the total mass, radius, and density
above, fixing an arbitrary uncertainty of 0.05 for each parameter. We are running
the model without any prior information on the two mass parameters to retrieve,
except that there are between 0 and 1M using the log-likelihood function with A
of 0.5, and using the global parameters established in section [4.3.3] The results of
this simulation are shown in Figure [5] below:

M1 = 0.30503} Earth-like planet

Y M2 = 0.70%553

& '
o

&

. Iron core 30.00:}8%

Recalculated values in MAGRATHEA:

+ Mass: 1.00Ma&

M2
Q
2
o

B
© = " + Radius: 0.97R@
o Silicate mantle 70.00%33%
« Bulk density: 5.95g.cm~
o
0"” T T T T T T T T T D Hydrosphere 0.00%3§%

Difference of mass: 0.00%
Difference of radius: 0.01%
Difference of bulk density: 0.01%

o 2 O 2] S o B v O >
A I N P
D Atmosphere h/he 0.00%§%

M1 M2
Figure 5: Output plots showing the results of the simulation, the first plot is showing
the corner plot results of an earth-like planet simulation with two-layer and the second
plot shows the mass distribution and the difference between the simulation and the initial
values.

It can be seen that in the first plot, the values are quite accurate, and the
uncertainties are consistent with the initial one. In the second figure, when we re-
input the algorithm’s results into MAGRATHEA, which calculates the new total mass,
radius, and bulk density, the difference from the initial input is small. Although
we cannot precisely quantify the significance of this value due to the exclusion
of uncertainties in the calculation, this small difference, along with the current
uncertainties we obtained, is quite satisfactory.

It is important to note that when we increase the initial uncertainties, the
model’s accuracy decreases. By adjusting the parameter A, we found that the best
results are achieved with A = 0.5.

For a two-layer planet, the expected results are always retrieved but depend
strongly on the initial predictions, initial values, and the complexity of the model.
Indeed for an Earth-like planet, the final uncertainties are the lowest, which is
logical because the EOS of MAGRATHEA are based on Earth’s characteristics.

4.5.2 Three-layer planet

Here we are doing the same thing as we did for the two layer planet but we are
adding an atmosphere. We are choosing an atmosphere with a mass of 0.3Mg and
we are recalculating the total parameters value through MAGRATHEA by inputting
M, = {0.3,0.7,0,0.3} here are the results (rounded to three significant figures):
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e Final Mass: 1.300Mg,
e Final Radius: 1.803Rg
e Bulk density: 1.219g.cm™3

We are following the same process as for the two-layer planet, keeping the same
global parameter values and assumptions. Here are the two resulting plots:

Three-layer planet
M1 = 0.40333 yere

M2 = 0.68*3%

o
o°

& —_— M4 = 0234318

G

M2
>

Recalculated values in MAGRATHEA:
QPf’ - Iron core 30.777133%%
* Mass: 1.31M&
] N « Radius: 1.73R®
: & I:l silicate mantle 52.313€ $32%
+ Bulk density: 1.39g.cm~>
o
o D Hydrosphere 0.00:3:8% .
Difference of mass: 0.77%
T ‘ T T D 138s6 Difference of radius: 4.01%
) I o ] © A > o ] ] ) Atmosphere h/he 17.69* % )
o o oF &F O 8 o o o RN R N P 12308 Difference of bulk density: 13.91%
M1 M2 [

Figure 6: Output plots showing the results of the simulation, the first plot is showing the
corner plot results of a three-layer planet and the second plot shows the mass distribution
and the difference between the initial value and the simulation.

As discussed in Sections [1] and [2], the degeneracy among potential composition
scenarios presents our main obstacle. This ambiguity becomes particularly evident
when attempting to constrain three layers simultaneously. As illustrated in left
Figure [0 the uncertainties are larger than for a two-layer planet, and the model
struggles to converge, resulting in a degenerate solution. The relationship between
the parameters appears linear, indicating that as the mass of the core increases,
the masses of the atmosphere and the mantle will decrease. This is why most
papers on modeling the interiors of exoplanets focus on fixing one or two layers
while attempting to retrieve the others[29], as we plan to do in Section 4. When
encountered this problem, we tried to incorporate the contributions of radius and
mass into the log-likelihood function to better discriminate the mass of each layer.
However, it turns out that this approach led to worse results, likely because these
contributions were already accounted for in the density calculation.

However, we can still observe that the mantle is relatively well-constrained.
Being the middle layer, the model can converge to a better value as it takes into
account the constraints on the surrounding layers plus its own.

Nevertheless, the model’s final values agree still well with the observed values
(see difference values on the right Figure @ However, these values are not partic-
ularly pertinent in this test case since we know what we need to retrieve. It will be
more interesting in the case of K2-18b (see Section [f)).
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4.5.3 Four-layer planet

The final step we need to attempt is to constrain all four layers simultaneously,
which would lead to the most accurate modeling of the interior due to increased
flexibility in the model. However, as seen with the three layers, it is predictable
that the degeneracy between the different scenarios will make this task almost
impossible. Therefore, we are trying and repeating the operation once again, adding
the last available layer: a hydrosphere of 0.4 M. Then we are following the same
process as for the two and three-layer planet, keeping the same global parameter
values and assumptions.

The simulation never converged, indicating that there is too much degeneracy
for convergence as all parameters depend completely on each other. Therefore,
the conclusion is that we will stick to constraining only two layers simultaneously,
which still leaves a range of possible interiors as we will later change the composition
within a layer.

4.6 Other parameters

In addition to adjusting the number of layers, we can also modify parameters within
the algorithm. Two particularly noteworthy parameters are temperature and the
number of live points.

e Temperature:

Increasing the temperature will elevate the mass of the upper layers of the planet
while reducing the mass of the inner layers. It will indeed extend the total radius
of the planet, thus reducing the bulk density.

e Min _num _live_points:

Increasing the number of live points slows down the convergence of the simulation
but enhances the accuracy of the constraints.

5 K2-18b case

In this part, we are going to focus on K2-18b, trying to constrain its internal
composition as accurately as possible by considering different interior possibilities.

To do so, we provide the model with the total mass, radius, and density along
with their associated uncertainties from Section and we change the surface
temperature to 284.0 K [56].

5.0.1 Main composition

As we concluded in the previous section, we need to fix two layers to have a more ac-
curate constraint on the other two. We are going to perform two tests to determine
which layer is favored by the model.

For the first simulation, the core and the mantle of the planet are fixed. We
choose an Earth-like core and set the mantle to zero. On Earth, the core accounts
for approximately 32% of the total mass. Therefore, we fix M1=2.7616 My and
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M2=0, then we try to retrieve the mass of the hydrosphere and atmosphere. We
keep the same assumptions as in Section and run the model. The results are
shown in Figure[7} and the differences between the model and the observed values,
plus the result of the loglike value are given in Table [T}

M3 = 5_1—,3 %; Three-layer planet

- M4 = 0.44+032 '
o |
K

. Iron core 32.0073%

M4

Recalculated values in MAGRATHEA:
* Mass: 8.37M&
« Radius: 2.29R&

I:‘ silicate mantle 0.00%§8%
+ Bulk density: 3.81g.cm~>
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Figure 7: Output plots showing the results of the simulation. The first plot displays the
corner plot results of a three-layer planet with a core, hydrosphere and atmosphere. The
second plot shows the mass distribution and the difference between the initial value and
the simulation.

For the second simulation, we are still fixing the core mass to M1=2.7616 Mg
and we are choosing a hydrosphere equivalent to the amount of water on Earth,
which is 0.02% of the total masﬁ. This corresponds to M3=0.1726 Mg, for K2-18b.
We then model a mantle and an atmosphere. The results are shown in Figure [§]
and the differences between the model and the results are given in Table [T}

8Source: https://phys.org/news;/2014-12-percent-earth.html
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Figure 8: Output plots showing the results of the simulation. The first plot displays the
corner plot results of a four-layer planet. The second plot shows the mass distribution
and the difference between the initial value and the simulation.

The results reveal that the three-layer planet exhibits smaller differences be-
tween the model predictions and initial values compared to the four-layer planet,
suggesting a closer direct match. This could be attributed to the simpler mod-
eling approach of the three-layer system, potentially leading to fewer deviations.
However, in contrast, the four-layer planet shows better constrained layers, char-
acterized by a more defined Gaussian shape and reduced final uncertainty. This
underscores the inherent trade-off between achieving accuracy in raw differences
versus the precision of the model’s predictions.

Moving forward, we will focus exclusively on a three-layer planet with a core, hy-
drosphere, and atmosphere, as this model facilitates a clearer understanding of
planetary mass distribution and generally provides more accurate results.

5.0.2 Atmosphere

As we have access to the transmission spectra of K2-18b (see Figure , we will
include the contribution of the molecules present in its atmosphere to understand
their impact on the rest of the interior composition. To achieve this, we will calcu-
late and adjust the value of the mean molecular weight in the MAGRATHEA code.

The concentration of each molecule in the atmosphere is primarily influenced by
chemical processes, wind-driven mixing, and condensation. These three processes
vary across different regions of the atmosphere. Utilizing the mean molecular weight
constraints from JWST observations provides a useful first-order approximation for
the input needed to model the atmospheric layer composition. The spectral features
of hydrogen and helium are not visible because these neutral gases do not have ab-
sorption features in the observed wavelength range. Nevertheless, their presence in
the atmosphere is inferred from their significant contribution to the mean molecular
weight, which enhances the spectral signatures of other gases’ absorption.

To determine the final mean molecular weight, we start by measuring the am-
plitude of the two main spectral features, CH4 and CO2, to evaluate their contri-
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bution to the total mean molecular weight. Using equation (11) and the known
amplitudes, we calculate their approximate contribution, denoted as f in percent-
age. The remaining percentage is attributed to the hydrogen and helium mix. Here,
My represents the molar mass in g.mol™" of each species X.

Moy = (fen, - Mcn,) + (foo, - Mco,) + (fu/me - Mu/ne)
= (0.275-16) 4 (0.250 - 44) + (0.475 - 3) (17)
= 16.825g.mol "
We find a value of 16.825 g.mol™! and thus we change the original value of 3
g.mol ™! to this new one.

We are still fixing an Earth-like core and also the mantle to zero. The result are
shown in the Figure [9] and the likelihood value is provided in Table [I}

M3 = 6.21+133 Three-layer planet

- +0.12
T T T T M4 = 0‘05—0.04
o? '
o°
o - Iron core 32.0033§%

+ Mass: 9.02M&
1 N * Radius: 2.16R®
Q'," D Silicate mantle 0.00*§§% adius
« Bulk density: 4.93g.cm~*
T T T T D Hydrosphere 71.96*1 §1%

o e o L] Vv B o & Difference of mass: 4.54%

M4
v

Recalculated values in MAGRATHEA:

Difference of radius: 17.30%

D Atmosphere h/he 0.587}32;%
Difference of bulk density: 84.64%

M3 M4

Figure 9: Output plots showing the results of the simulation. The first plot displays the
corner plot results of a three-layer planet with a core, an hydrosphere, and an atmosphere
with a mean molecular weight of 16.825 g.mol~!. The second plot shows the mass distri-
bution and the difference between the initial value and the simulation.

The impact of the mean molecular weight on the atmosphere and its dependency
on the planet radius will be analyzed in Section

5.0.3 Core

For this test, we are altering the core composition and investigating the effects of
changing the equation of state (EOS) from a pure iron core to a mixture of iron
and silicate. To achieve this, we are directly modifying the equation of state in
the MAGRATHEA code. Initially, we are testing Fe-Si alloys with 7 weight percent Si,
followed by 15 weight percent Si.

This test is aimed at favoring a formation pathway process. Indeed, pure iron
cores can form in planets that differentiated early in their history, allowing iron,
being a heavy element, to migrate towards the center due to the effect of grav-
ity. On the other hand, mixed iron-silicate cores can form in planets where the
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differentiation process has not been as efficient or where initial conditions favored
a mixture of materials. Planets with mixed cores may present a more complex
formation history and varied chemical interactions between core components. This
difference in composition can manifest in the planet’s magnetic field. A pure iron
core can generate a strong planetary magnetic field due to the dynamo generated
by the circulation of liquid iron. Conversely, a mixed iron-silicate core can have a
weaker or more complex magnetic field, depending on the distribution of iron and
silicates.

For this simulation we are fixing the mass of the core to see its impact on the
hydrosphere and atmosphere, allowing us to compare the results with the previous
study. We set the core mass to 2.7616 Mg, and the mantle mass to 0. For the rest,
we maintain the same assumptions as in Section [4.5| and run the model.

The left plot in Figure [10] shows the results for the Fe-Si alloys with 7 weight
percent Si, and the right plot in Figure shows the results for the Fe-Si alloys
with 15 weight percent Si. The differences between the model and the results along
with the loglikelihood value are given in Table

Ma

M3 = 5.15:12

M4 = 0.44303

M4

M3 = 5.10*}3%

M4 = 0.43032

N SN A
RS RN
M3 M4

M3 M4

Figure 10: Corner plot results of a Fe-Si alloy core containing 7 weight percent Si on the
left and 15 weight percent Si on the right.

5.1 Comparative analysis

Here, we focus on the study by Madhusudhan, Matthew C. Nixon et al. (2020)
[29]. The authors simulated the interior composition of K2-18b using a model
that includes a two-component Fe+rock core with an inner Fe layer and an outer
silicate layer, a layer of HyO, and an outer H/He envelope. This model bears
similarities to MAGRATHEA, enabling us to test their three case scenarios for K2-18b
with MAGRATHEA. The three cases are a rocky planet (Case 1), a gas-rich mini-
Neptune (Case 2), and a Hycean world (Case 3). The composition ratios used
in their study are based on those shown in Figure [3, where an Earth-like core is
assumed to comprise 33% Fe, translating to 45% for Case 2, resulting in 14.85% Fe
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and 30.15% Si. We aim to reproduce these cases using the same temperature and
pressure assumptions we used previously to compare our results with theirs. The
composition ratios for each case are summarized below:

Case 1 for K2-18b (Rocky Planet): M, = {94.7%, 0%, 0.3%, 5%}
Case 2 for K2-18b (Gas-rich Mini-Neptune): M;,; = {14.85%, 30.15%, 54.97%, 0.03%}
Case 3 for K2-18b (Hycean World): M, = {3.3%,6.7%, 89.994%, 0.006% }

The results from MAGRATHEA are summarized in the Table [1l

6 Discussion

In this section, the findings from the previous part will be summarized by high-
lighting the key observations and significant outcomes of the study, implications
and considerations for K2-18b’s interior composition.

The key findings from all the simulations made in section [5| are summarized in
the table below.

In Mg In % /
M1 M2 M3 M4 diff Mass | diff Rad | diff Dens | log-likelihood
Simulation 1 | 2.7616 0 5177180 | 0441052 2.99 11.41 39.39 —6.93 £ 0.145
Simulation 2 | 2.7616 | 2.22%09% | 0.1726 | 0.3370%5 | 36.45 32.70 108.27 | —25.67 +0.238
Simulation 3 | 2.7616 0 6.21713% | 0.057542 4.54 10.96 47.94 | —15.84+0.194
Simulation 4 | 2.7616 0 5157133 | 0.447052 3.23 11.81 40.95 | —6.75£0.0923
Simulation 5 | 2.7616 0 5107758 | 0437052 3.92 11.86 40.18 | —6.555 % 0.2083
Case 1 8.17261 0 0.02589 | 0.4315 0 42.62 | 428.80 /
Case 2 1.281555 | 2.601945 | 4.743911 | 0.002589 0 12.04 46.77 /
Case 3 0.28479 | 0.57821 | 7.7664822 | 0.0005178 0 4.96 16.37 /

Table 1: Table of Different Models: Simulation are in the order they appeared in the
previous section [4] along with the three paper’s Cases. Simulation 1: pure iron core
with an hydrosphere and an atmosphere (with 3 g.mol™!). Simulation 2: pure iron core
with a mantle, an hydrosphere and an atmosphere (with 3 g.mol™!). Simulation 3: pure
iron core with an hydrosphere and an atmosphere (with 16.825 g.mol™!). Simulation 4:
Fe-Si alloys with 7 weight percent core with an hydrosphere and an atmosphere (with 3
g.mol™!). Simulation 5: Fe-Si alloys with 15 weight percent core with an hydrosphere
and an atmosphere (with 3 g.mol™!).

The model that most accurately reflects the observed data is the Hycean world
model (Case 3). It shows the lowest variance in key parameters - mass, radius,
and density - making it the most coherent with the observed data. Moreover,
Case 1 and Simulation 2, both sharing a high content of rocky material, exhibit
significant discrepancies in density, suggesting again that K2-18b likely consists of
low-density materials to match its observed density. If K2-18b indeed hosts a sub-
stantial amount of water as favored by the model, it would potentially inaugurate
a new classification of planets.
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As previously mentioned, for the five Simulations using our model, the three-
layer planet is favored (highest log-likelihood value) and initial difference calcula-
tion. However, in reality, we do not know which configuration is more probable,
and a three-layer planet with a core, mantle, and atmosphere could also have been
possible. This scenario never converged, so it was not included in this report, but
it remains a plausible interior composition for K2-18b, with the possibility of an
atmosphere that could be vastly extended to match the observed density.

When the mean molecular weight increases, it results in a significantly less ex-
tended atmosphere of 0.05Mg compared to the original H/He mix, which gives an
atmosphere of 0.44M. This change implies that atmospheres with a lower mean
molecular weight have lower total atmospheric mass. Even more interestingly, the
simulations show less difference between the observed values and the simulated
values for the low mean molecular weight atmosphere. This outcome should not
be possible when considering the observed transmission spectra. This discrepancy
suggests that the actual atmosphere may be deeper as it would require a smaller
amount of heavy molecules to achieve the same accuracy or that the heavy molecules
might be confined to specific layers or regions of the atmosphere, rather than being
uniformly mixed throughout. The findings highlight the need for adjustments in
the atmospheric models used, see section [7}

For the core Fe-Si alloys simulations, the difference in results is very small. The
simulation that seems to better replicate the density and distribution of materials
in the core, when looking at the other layers, is the 15 weight percent Si model
with a lower log-likelihood value. This also aligns with Case 3, which includes a
constrained iron and silicate layer. The presence of more silicate might stabilize
certain phases or structures within the core, leading to a more accurate represen-
tation of the planet’s interior. This suggests that the formation of the building
blocks of K2-18b could have occurred late in the history of its protoplanatery disk.
This is particularly intriguing, as we currently do not fully understand how planets
sub-Neptune like K2-18b formed.

7 Perspectives
In this section, we will analyze potential future work that can enhance our model.

e Atmosphere:

To enhance the study of K2-18b’s interior composition and refine our model,
our primary focus should be on understanding its atmosphere. For instance
we could calculate and incorporate the temperature gradient of the planet’s
atmosphere. Such study have been proposed for K2-18b with Exo-REM, a
1D radiative-equilibrium model[57]. Additionally, using cloud-resolving sim-
ulations of the planetary atmosphere[58] could provide further insights and
refinement to the cloud mapping and potential water cycle. Ultimately, a
deep atmosphere presents different challenges and considerations compared
to a shallow one. Achieving a deeper understanding requires advancements in
instrumentation to probe deeper into the atmosphere.
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e Host star:

In addition, considering stellar activity in our model is essential as it pro-
foundly influences the presence and chemical composition of an atmosphere.
For instance, a small planet subjected to excessive irradiation might either
lose its atmosphere entirely or develop unique gas signatures due to potential
surface magma as discussed in section [2.4. Examining the atomic composi-
tion of planetary atmospheres and comparing them to their host stars’ atoms
could also enhance our understanding. Through the study of numerous stars,
we can uncover potential correlations by employing machine learning tools
to predict the atmospheric composition of a planet based on its host star’s
characteristics.

e Magnetism:
To better understand the planet’s core, we could analyze its magnetic field.
Planets with strong magnetic fields can deflect their host star wind, create
radiation belts, or exhibit charged particles in their atmospheres. Another
approach is studying radio emissions from the planet, which can be influenced
by its magnetic field.

e Other planets:
Understanding the interior composition of planets within our own solar system

is crucial. Additionally, studying the interiors of nearby planets, such as those
in the TRAPPIST-1 system, could also provide valuable insightd™}

8 Limitations

It is important to acknowledge the inherent limitations of the models discussed here.
Beyond the general problem of degeneracy, one significant issue is the assumption
of distinct layers (e.g., mantle, hydrosphere, atmosphere) without considering po-
tential mixing, such as between rock and water layers, or transitional zones between
these layers. In some planetary scenarios, ice and rock layers may remain mixed
for billions of years unless significant mass loss processes occur. Planetary interiors
in reality exhibit fluid dynamics, chemical interactions, and phase changes that are
not fully captured by these models.

Furthermore, the equations used in MAGRATHEA are based on terrestrial data
and may not fully apply to diverse exoplanetary environments. Uncertainties in
input parameters such as planetary mass, radius, and atmospheric composition can
propagate into the model predictions and result in large final uncertainties.

Additionally, some combinations we attempted with the model were deemed
impossible or too complex by MAGRATHEA. However, the limitations of the model
do not necessarily mean that these configurations could not exist in reality. This
underscores the need for continued refinement and exploration of planetary interior
modeling to better understand the full range of possible planetary compositions
and structures.

19Source: https://www.researchgate.net/publication/331259714ceophysical , ssessment,, frabitability s oriher RAPPIST —
lexoplanets
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9 Conclusion

This project aimed to develop a model for the interior of small exoplanets us-
ing MAGRATHEA combined with UltraNest, despite the challenge of degenerate
composition. This issue is particularly significant due to the growing number of
exoplanet discoveries and atmospheric characterization. Additionally, this research
sought to understand the diversity of planetary compositions beyond our solar sys-
tem, unraveling the potential for their habitability.

This model has been applied to the exoplanet K2-18b to better understand its
nature. Different compositions for its interior were studied, with an analysis of its
atmosphere and the impact of core changes, along with comparisons to another
study. The results revealed a preference for a Hycean world, with an extended
atmosphere and a core made of an iron-silicate mix.

These findings on the modeling of sub-Neptune planets can be confirmed or
refuted by future observations from the JWST and upcoming missions such as
ARIEL from ESA in 2029. Although K2-18b will be too cold for the range of this
spacecraft, this mission will aim to constrain the chemistry of many exoplanets. It
will link their atmospheric composition to the chemistry of their host star, providing
new key insights to unravel their interior composition.
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